Regulation of the Dopamine D1-D2 Receptor Heterooligomer
نویسنده
چکیده
Dopamine receptors are members of the G protein-coupled receptor superfamily and play important roles in neuronal transmission. A D1-D2 receptor heterooligomer generating a Gprotein linked PLC-dependent intracellular calcium signal was previously identified. The discovery of this dopamine mediated calcium signal implicated a direct link between dopamine receptors and calcium generation, but its regulation remained to be elucidated. By measuring calcium signaling with Fluo-4 fluorescence or cameleon FRET, rapid desensitization of the calcium signal in heterologous cells and striatal neurons was demonstrated by pre-treatment with SKF 83959, which selectively activates D1-D2 receptor heteromers, or SKF 83822 which only activates D1 receptor homooligomers. Although SKF 83822 was unable to activate D1-D2 receptor heteromers, it still permitted desensitization of the calcium signal. This suggested that occupancy of the D1 receptor binding pocket by SKF 83822 resulted in conformational changes sufficient for desensitization without activation of the heteromer. BRET and coimmunoprecipitation studies indicated an agonist induced interaction between the D1-D2 receptor heteromer and GRK2. Increased expression of GRK2 led to a decrease in the calcium signal and decreased expression of GRK2 led to an increased calcium signal. Expression of the catalytically inactive and RGS mutated GRK2 constructs each led to a partial recovery of the GRK2-attenuated calcium signal. These results indicated that desensitization of the D1-D2 receptor heteromer mediated calcium signal can occur by agonist occupancy even without activation and is regulated by two distinct functions of GRK2. Immunocytochemistry and calcium assays demonstrated that recycling of internalized D1 and D2 receptors and iii resensitization of the desensitized calcium signal occurred after dopamine pre-treatment but not SKF 83959, suggesting that the trafficking and resensitization response associated with the D1D2 receptor heteromer is differentially regulated by specific ligands. Overall, these results suggest that D1-D2 receptor heterooligomers are uniquely regulated from their constituent receptors which are not coupled to Gq.
منابع مشابه
D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor.
We provided evidence for the formation of a novel phospholipase C-mediated calcium signal arising from coactivation of D1 and D2 dopamine receptors. In the present study, robust fluorescence resonance energy transfer showed that these receptors exist in close proximity indicative of D1-D2 receptor heterooligomerization. The close proximity of these receptors within the heterooligomer allowed fo...
متن کاملLateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area
Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...
متن کاملThe Blockade of D1/D2-Like Dopamine Receptors within the Dentate Gyrus of Hippocampus Decreased the Reinstatement of Morphine-Extinguished Conditioned Place Preference in Rats
Introduction: The hippocampus (HIP), the primary brain structure related to learning and memory, receives sparse but comprehensive dopamine innervations and contains dopamine D1/D2-like receptors. It is demonstrated that dopamine receptors in dentate gyrus (DG) region of HIP have a remarkable function in spatial reward processing. Much less is known about the involvement of HIP and its D1...
متن کاملCalcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis.
Accumulating pathological evidence showing layer-specific neuronal reduction, dendrite deficits and brain volume loss have implicated an apoptotic process in schizophrenia, but the exact mechanism remains elusive. Dopamine hyperactivity at D2 receptor sites was considered as an important mechanism in schizophrenia pathogenesis. Recently, a newly identified D1 and D2 receptor heterooligomer acti...
متن کاملThe Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice
In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011